Penerapan Metode *Double Exponential Smoothing* dan *Regresi Linier* pada Peramalan Persediaan *Packaging* di PT. XYZ

Sherly Indriani Rahayu^{1*}, Jauhari Arifin² Universitas Singaperbangsa Karawang

1.2 Teknik Industri, Universitas Singaperbangsa Karawang Jln. HS.Ronggo Waluyo, Puseurjaya, Telukjambe Timur, Karawang, Jawa Barat 41361 *Email: 2010631140113@student.unsika.ac.id

Abstract

PT. XYZ is one of the PT that produces packaging materials, one of which is sacks. This study aims to determine forecasting on sack raw material packaging using the Double Exponential Smoothing method and Linear Regression in these calculations using manual calculation methods using Microsoft excel. The two methods are then identified as having the smallest error value. The data used in this study uses secondary data in the form of sales reports of raw material packaging in the past. Based on the forecasting results obtained using the Double Exponential Smoothing and Linear Regression methods, the smallest error value was obtained in the linear regression method with an error value of 275,711. The forecasting results in the next period were 16,713 by manual calculation. Thus, among the predicted results of the two methods, the linear regression method is the most optical.

Keywords: Double Exponential Smoothing; Forecasting; Regresi Linier

Pendahuluan

Salah satu aspek strategis perusahaan agar dapat bersaing dalam dunia bisnis adalah perencanaan tersedianya produk barang memenuhi tuntutan pasar. Oleh karena seorang manajer peran untuk dan kemampuan memahami meramalkan keadaan bisnis di masa depan sangat dibutuhkan. Permasalahan yang umum dihadapi oleh para manajer adalah bagaimana meramalkan penjualan barang di masa mendatang berdasarkan data yang telah direkam sebelumnya. Peramalan tersebut sangat berpengaruh pada keputusan manajer untuk menentukan jumlah produksi barang yang harus disediakan oleh perusahaan (Rachman, 2018).

Dalam dunia bisnis, perubahan dalam permintaan penjualan packaging yang menurun dan meningkat merupakan hal yang perlu diwaspadai oleh para pengusaha. Agar usaha dapat berkembang, para pengusaha harus

membuat keputusan yang tepat dengan mempertimbangkan situasi dan kondisi yang sedang terjadi. Kebijakan dan strategi yang tepat diperlukan untuk memajukan usaha dan menghadapi tantangan pasar yang berubah. Maka peramalan persediaan dibuat sedemikian rupa agar kebutuhan pelanggan nantinya dapat terpenuhi. Maka, diperlukan metode peramalan yang *inventif*.

PT. XYZ merupakan salah satu perusahaan yang memproduksi bahan packaging bahan baku salah satunya adalah packaging karung. Masalah yang dihadapi PT. XYZ perlu menentukan prioritas barang yang harus diperbanyak persediaan packagingnya dan menghitung jumlah yang tepat agar dapat memenuhi kebutuhan pelanggan dengan baik. Dengan begitu, mereka dapat mengoptimalkan layanan mereka dan menjaga kepuasan pelanggan. Hal ini dikarenakan permintaan konsumen terhadap barang menentu. Oleh karena peramalan persediaan diperlukan untuk

mengatasi masalah ini. Ketika sebuah bisnis tidak memiliki persediaan yang cukup, akan timbul masalah dalam operasionalnya. Oleh karena itu, untuk mengatasi permasalahan ini, diperlukan teknik peramalan untuk memprediksi kebutuhan persediaan barang agar tidak terjadi penumpukan stok *packaging* yang berlebihan.

Beberapa metode dapat digunakan untuk membuat prediksi. Pemilihan digunakan metode vang akan dipengaruhi oleh jenis data yang tersedia, baik kualitatif maupun kuantitatif. Informasi diperoleh yang penelitian PT. XYZ bersifat kuantitatif. Metode peramalan kuantitatif seperti Double Exponential Smoothing dan Regresi Linier dapat digunakan untuk mengolah data kuantitatif.

Hasil peramalan hanya dapat ketidakpastian, mengurangi bukan menghilangkan ketidakpastian. Untuk meminimalkan perbedaan yang sangat antara hasil ramalan permintaan aktual, akurasi hasil ramalan harus dihitung. Setiap metode peramalan memiliki akurasi yang berbeda. Semakin kecil nilai akurasi (nilai error), semakin akurat hasil prediksinya. Oleh karena itu. penelitian ini mencoba mencari nilai akurasi terendah dengan membandingkan nilai akurasi metode Double Exponential Smoothing dan Regresi Linier. sehingga akan diketahui cara menentukan jumlah yang pas untuk persediaan bulan depan yang tepat untuk mengurangi penumpukan pada PT. XYZ. Double Exponential Smoothing dan Regresi Linier adalah metode yang cocok untuk menyelesaikan permasalahan PT. XYZ. khususnya pada bagian penentuan persediaan permasalahan packaging karung. Tujuan dari penelitian ini adalah PT. XYZ mengetahui cara menentukan jumlah stok yang tepat untuk packaging karung, untuk menjaga ketersediaan dan dapat memenuhi kebutuhan konsumen.

Rumusan Masalah dalam penelitian ini berapa nilai peramalan persediaan produk *packaging* karung di PT. XYZ dengan metode *Double* Exponential Smoothing dan Regresi Linier.

Berdasarkan permasalahan di atas, adalah sebagai berikut:

- 1. Menentukan metode peramalan persediaan untuk packaging karung.
- 2. Mengetahui hasil peramalan dengan metode *Double Exponential Smoothing* dan *Regresi Linier*.

Diharapkan bahwa penelitian ini akan memberikan manfaat yang berarti bagi perusahaan dan penulisnya sendiri yaitu:

- 1. Penelitian ini akan membantu dalam menyediakan produk yang tepat dengan tepat waktu, sehingga dapat meningkatkan kepuasan pelanggan
- 2. Dengan meningkatkan akurasi peramalan, penelitian ini akan mendukung pengambilan keputusan yang lebih tepat terkait persediaan *packaging*.
- 3. Penelitian ini akan membantu mencegah terjadinya kelebihan persediaan yang dapat mengganggu operasional perusahaan

Data yang digunakan dalam peramalan adalah data persediaan packaging karung dari Januari 2022 hingga Desember 2022.

Metodologi Penelitian

Persediaan adalah sekumpulan barang yang disimpan untuk dijual dalam operasi bisnis perusahaan dan dapat digunakan dalam proses produksi atau dapat digunakan untuk tujuan tertentu (Swasono & Prastowo, 2021).

Persediaan memiliki beraneka ragam fungsi penting yang menambahkan keluwesan suatu operasi pada perusahaan. Fungsi persediaan menurut Alexandri (2021) sebagai berikut:

 Untuk menyampaikan pada pilihan barang agar dapat mencukupi permintaan konsumen yang diantisipasi dan melepaskan

- perusahaan dari ketidak stabilan permintaan. Untuk persediaan ini digunakan secara umum pada setiap perusahaan ritel.
- 2. Untuk memisahkan dari beberapa tahapan proses produksi. Misalnya pada suatu persediaan perusahaan memiliki ketidak stabilan, maka persediaan tambahan dibutuhkan agar dapat memisahkan proses produksi dan pemasok.
- 3. Untuk mencari keuntungan melalui potongan jumlah karena pembelian barang dalam jumlah yang besar dapat memberikan penurunan biaya pengiriman barang.
- 4. Untuk menghindari inflasi dan kenaikan harga barang.

Peramalan adalah pemikiran terhadap suatu besaran, misalnya permintaan terhadap suatu produk atau beberapa produk pada periode yang akan datang yang akan datang. Ada hakekatnya peramalan hanyalah suatu pemikiran (guess), tapi dengan menggunakan teknik-teknik tertentu peramalan mejadi lebih dari sekedar perkiraan. Peramalan dapat dikatakan perkiraan yang ilmiah (educated guess). Setiap pengambilan keputusan yang akan datang, maka pasti ada peramalan yang melandasi pengambilan tersebut keputusan (Oamal, 2015).

Berdasarkan pendapat yang dikemukakan oleh ahli, Peramalan disini memprediksi sesuatu yang akan datang berdasarkan data penjualan masa lalu yang dianalisis dengan cara tertentu.

Tujuan peramalan menurut (Heizer & Render, 2006), antara lain:

- Mengevaluasi kebijakan dan kebijakan terkini dari persahaan yang lulus dan melihat sejauh mana pengaruhnya di masa depan.
- 2. Kebutuhan peramalan harus dilakukan karena penundaan antara kebijakan dan implementasi perusahaan.
- 3. Prakiraan adalah dasar penyusunan bisnis di perusahaan sehingga dapat meningkatkan efektivitas rencana bisnis.

Ada beberapa metode yang dikelompokan dalam metode Exponential Smoothing, yaitu Single Exponential Smoothing, Double Exponential Smoothing, dan Exponential Smoothing with linear trend.

Metode *Double Exponential Smoothing* ini biasanya lebih tepat untuk meramalkan data yang mengalami tren kenaikan (Subagyo, 1986). Pada metode *Double Exponential Smoothing* proses penentuan ramalan dimulai dengan menentukan besarnya *alpha* secara *trial* dan *error*.

Berikut merupakan tahapan dalam menentukan ramalan menggunakan Double Exponential Smoothing.

1. Menentukan *smoothing* pertama (St)

$$S't = \alpha \cdot Xt + (1 - \alpha) \cdot S't - 1$$

2. Menentukan *smoothing* pertama (*S"t*)

$$S''t = \alpha \cdot S't + (1 - \alpha) \cdot S't - 1$$

dimana:

S''t = Double Smoothing pada periode ke-t.

S't = Single Smoothing pada periode ke-t.

 α = Koefisien pemulusan (0 < α < 1)

 $Xt + (1 - \alpha) = \text{Nilai aktual } time$ series.

S''t-1 = Peramalan pada waktu t-1.

- 3. Menentukan besarnya konstanta (α) at = S't + (S't S''t) at = 2S't S''t
- 4. Menentukan besarnya slope/koefisien *trend* (*b*)

$$bt = \frac{a}{(1-a)} (s't - s''t)$$

5. Menentukan besarnya *forecast* (Ft+m)

$$Ft+m = \alpha t + bt \cdot m$$

Dimana m adalah jumlah periode ke depan yang diramalkan, sehingga Ft+m merupakan nilai ramalan pada periode ke-t.

Menurut Purnomo (2003), Regresi Linier merupakan prosedurprosedur statistical yang paling banyak digunakan sebagai metode peramalan, karena *relative* lebih mudah dipahami dan hasil peramalan dengan metode ini lebih akurat dalam berbagai situasi. Dalam metode *Regresi Linier*, pada hubungan antara suatu variabel yang mempengaruhinya dapat di nyatakan dengan sebuah garis lurus.

Dalam hal ini yang termasuk variabel bebas yaitu indeks waktu (t) dan variabel terikatnya yaitu nilai ramalan permintaan periode ke – t. Metode ini digunakan apabila pola dari data aktual permintaan menunjikkan adanya kecenderungan menaik dari waktu ke waktu. Persamaan *Regresi Linier* dapat dinyatakan sebagai berikut:

$$Y' = a + bX$$

Dimana:

Y: Nilai ramalan permintaan periode ke - t.

a: Intersept.

b: *Slope* dari garis kecenderungan, merupakan tingkat perubahan dalam permintaan.

x: Indeks waktu (t = 1,2,3...,n); n adalah banyaknya periode waktu.

Dengan taksiran a dan b masingmasing menyatakan perpotongan dengan sumbu y dan kenaikannya. Lambang ŷ digunakan di sini untuk membedakan antara taksiran atau nilai prediksi yang diberikan oleh garis *regresi* sampel dan nilai y amatan percobaan yang sesungguhnya untuk suatu nilai x. *Slope* dan *intersept* dari persamaan *Regresi Linier* dihitung dengan menggunakan formula berikut (Hasan, 1999):

formula berikut (Hasan, 1999):

$$b = \frac{(n. \Sigma xy) - (\Sigma x. \Sigma y)}{(n. \Sigma x^2) - (\Sigma x^2)}$$

$$a = \frac{\Sigma y - b.\Sigma x}{n}$$

n = Banyaknya data

b = slope dari persamaan garis lurus

a = *intersept* dari persamaan garis lurus

x = index waktu (periode)

x-bar = nilai rata-rata dari x

y = variabel permintaan (data aktual permintaan)

y-bar = nilai rata-rata permintaan per periode waktu, rata-rata dari y

Ukuran akurasi hasil peramalan

yang merupakan ukuran kesalahan peramalan merupakan ukuran tentang tingkat perbedaan antara hasil permintaan dengan permintaan yang sebenarnya terjadi. Beberapa metode telah digunakan untuk menunjukkan kesalahan yang disebabkan oleh suatu teknik peramalan tertentu (Hudaningsih, Utami, & Jabbar, 2020).

Terdapat juga beberapa metrik lain yang umum digunakan untuk menilai akurasi suatu metode peramalan dalam menggambarkan data deret waktu dengan tepat yaitu nilai MAPE (Mean Absolute Percentage Error), MSE (Mean Squared Error), MAD (Mean Absolute Deviation)

Yang digunakan dalam penelitian ini *Mean Squared Error*. *Mean Squared Error* (MSE) biasa disebut juga galat peramalan. Galat ramalan tidak dapat dihindari dalam sistem peramalan, namun galat ramalan itu harus dikelola dengan benar. Persamaannya adalah sebagai berikut:

$$MSE = \Sigma \frac{(y - y't)}{n} 2$$

Yt = Nilai observasi

Y't = Nilai peramalan

Pengelolaan terhadap galat ramalan akan menjadi lebih efektif apabila peramal mampu mengambil tindakan mengambil tindakan yang tepat berkaitan dengan alasan-alasan terjadinya galat ramalan itu.

Hasil dan Pembahasan

Penelitian ini tergolong penelitian kuantitatif dimana laporan hasil penjualan *packaging* karung PT. XYZ tahun 2022 yang digunakan untuk menghitung forecast.

Berikut merupakan tabel hasil penjualan *packaging* karung yang telah dikumpulkan sebagai berikut:

Tabel 1. Hasil Penjualan Packaging

Karung T	ahun 2022
Periode (t)	Demand (x)
1	1,350
2	1,300
3	
4	764
5	231

6	1,188
7	1,824
8	456
9	
10	1,532
11	1,037
12	2,339
Total	12021

Sumber: Data Sekunder

Data yang diperoleh pada tabel 1 adalah jumlah keseluruhan produk packaging karung yang terjual selama tahun 2022 (12 bulan). Pada penelitian ini, data hasil penjualan packaging karung tahun 2022 akan diolah menggunakan dua metode peramalan,

yaitu metode *Double Exponential Smoothing* dan *Regresi Linier*. Kemudian dibandingkan untuk mengetahui metode apa yang memiliki nilai kesalahan terkecil.

metode Double Penggunaan Exponential Smoothing memerlukan parameter pemulusan atau yang biasa disebut dengan α (alpha) yang berkisar antara 0 sampai dengan 1. Nilai α (alpha) tersebut bisa didapatkan dengan trial dan error. Berikut hasil perhitungan metode Double Exponential Smoothing dengan yang digunakan dalam nilai α perhitungan yaitu 0,1 sampai 0,9.

Pengolahan data dapat dilihat pada tabel sebagai berikut:

Tabel 2. Hasil Perhitungan DES dengan α = 0,2

Periode	Demand	S't	S''t	S't-	at	bt	Ft	Error	Error^2
(t)	(x)			S''t					
1	1,350	1350	1350						
2	1,300	1340	1348	-8	1332	-2			
3		1072	1293	-221	851	-55	1330	-1330	1768900
4	764	1010	1236	-226	784	-56	796	-32	1024
5	231	855	1160	-305	549	-76	728	-497	247009
6	1,188	921	1112	-191	730	-48	473	715	511625
7	1,824	1102	1110	-8	1093	-2	682	1142	1303086
8	456	973	1083	-110	863	-28	1091	-635	403650
9		778	1022	-244	534	-61	835	-835	697414
10	1,532	929	1003	-74	855	-19	474	1058	1120281
11	1,037	951	993	-42	908	-11	836	201	40387
12	2,339	1228	1040	188	1417	47	898	1441	2076906
							1464		
Total	12021	12508	13749	-	9917	-	8143	1228	8170283
				1241		310			
								MSE	817028

Sumber: Data Primer

Tabel 3. Hasil Perhitungan DES dengan α = 0,3

			asir r cri						
Periode	Demand	S't	S''t	S't-	at	bt	Ft	Error	Error^2
(t)	(x)			S''t					
1	1,350	1350	1350						
2	1,300	1335	1346	-11	1325	-5			
3		935	1222	-	647	-	1320	-1320	1742400
				288		123			
4	764	883	1121	-	646	-	524	241	57840
				237		102			
5	231	688	991	-	385	-	545	-314	98282
				303		130			
6	1,188	838	945	-	731	-46	255	933	870965
				107					
7	1,824	1134	1001	132	1266	57	685	1139	1297713

8	456	930	980	-50	881	-21	1322	-866	750743
9		651	881	-	421	-99	859	-859	738276
				230					
10	1,532	915	892	24	939	10	322	1210	1463230
11	1,037	952	910	42	994	18	949	88	7660
12	2,339	1368	1047	321	1689	137	1012	1327	1760407
							1826		
Total	12021	11979	12685	-	9922	-	9620	1578	8787516
				706		303			
								MSE	878752
			~ .	_					

Tabel 4. Hasil Perhitungan DES dengan $\alpha = 0.4$

Periode	Demand	S't	S''t	S't-	at	bt	Ft	Error	Error^2
(t)	(x)			S''t					
1	1,350	1,350	1350						
2	1,300	1330	1342	-12	1318	-8			
3		798	1124	-	472	-	1326	-1326	1758276
				326		218			
4	764	784	988	-	580	-	689	75	5595
				204		136			
5	231	563	818	-	308	-	716	-485	235613
				255		170			
6	1,188	813	816	-3	810	-2	478	710	504145
7	1,824	1217	977	241	1458	161	812	1012	1024189
8	456	913	951	-38	875	-26	1298	-842	708399
9		548	790	-	306	-	900	-900	810154
				242		161			
10	1,532	941	850	91	1032	61	467	1065	1134175
11	1,037	980	902	78	1057	52	972	65	4257
12	2,339	1523	1151	373	1896	249	1006	1333	1778221
							2145		
Total	12021	11761	12060	-	10112	-	10808	707	7963025
				299		199			
								MSE	796303

Sumber: Data Primer

Tabel 5. Hasil Perhitungan DES dengan $\alpha = 0.5$

Periode (t)	Demand (x)	S't	S''t	S't- S''t	at	bt	Ft	Error	Error^2
1	1,350	1350	1350						
2	1,300	1325	1337	12.5	1312	12.5			
3		663	1000	338	325	338	1300	-1300	1690000
4	764	713	857	- 143	569	- 143	-13	777	602952
5	231	472	664	- 192	280	- 192	427	-196	38220
6 7 8	1,188 1,824 456	830 1327 892	747 1037 964	83 290 -73	913 1617 819	83 290 -73	88 996 1907	1100 828 -1451	1210825 685998 2104948

9		446	705	- 259	186	- 259	746	-746	556376
10	1,532	989	847	141	1131	141	-73	1605	2575398
11	1,037	1013	930	83	1096	83	1273	-236	55563
12	2,339	1676	1303	373	2048	373	1179	1160	1345786
							2422		
Total	69508	11695	11742	-47	10298	-47	10251	1542	10866067
								MSE	1086607

Tabel 6. Hasil Perhitungan DES dengan $\alpha = 0.6$

Periode	Demand	S't	S''t	S't-	at	bt	Ft	Error	Error^2
(t)	(x)			S''t					
1	1,350	1350	1350						
2	1,300	1320	1332	-12	1308	-18			
3		528	850	-	206	-	1290	-1290	1664100
				322		482			
4	764	670	742	-72	598	-	-276	1040	1081600
						108			
5	231	406	541	-	272	-	490	-259	66874
				134		201			
6	1,188	875	741	134	1009	201	71	1117	1247064
7	1,824	1445	1163	281	1726	422	1210	614	376692
8	456	851	976	-	727	-	2148	-1692	2861760
				125		187			
9		341	595	-	86	-	540	-540	291103
				254		381			
10	1,532	1055	871	184	1240	276	-295	1827	3338062
11	1,037	1044	975	69	1114	104	1516	-479	229484
12	2,339	1821	1483	338	2160	508	1218	1121	1257624
							2667		
Total	12021	11707	11618	88	10445	133	10578	1460	12414361
								MSE	1241436

Sumber: Data Primer

Tabel 7. Hasil Perhitungan DES dengan $\alpha = 0.7$

Periode	Demand	S't	S''t	S't-	at	bt	Ft	Error	Error^2
(t)	(x)			S''t					
1	1,350	1350	1350						_
2	1,300	1315	1326	-11	1305	-25			
3		395	674	-	115	-	1329	-1329	1766241
				279		652			
4	764	653	659	-6	647	-14	767	-3	8
5	231	358	448	-91	267	-	661	-430	185253
						211			
6	1,188	939	792	147	1086	344	478	710	503639
7	1,824	1558	1328	230	1789	537	743	1081	1169430
8	456	787	949	-	624	-	1252	-796	633217
				163		379			
9		236	450	-	22	-	1003	-1003	1006844
				214		499			
10	1,532	1143	935	208	1351	485	521	1011	1021490
10	1,532	1143	935		1351		521	1011	1021490

11	1,037	1069	1029	40	1109	94	866	171	29268
12	2,339	1958	1679	279	2237	650	1015	1324	1751880
							2887		
Total	12021	11760	11619	141	10552	329	11523	735	8067271
								MSE	806727

Tabel 8. Hasil Perhitungan DES dengan $\alpha = 0.8$

Periode	Demand	S't	S''t	S't-	at	bt	Ft	Error	Error^2
(t)	(x)			S''t					
1	1,350	1350	1350						
2	1,300	1310	1318	-8	1302	-32			
3		262	473	-	51	-	1270	-1270	1612900
				211		845			
4	764	664	626	38	702	152	-794	1558	2427364
5	231	318	379	-62	256	-	854	-623	388129
						246			
6	1,188	1014	887	127	1141	508	10	1178	1388815
7	1,824	1662	1507	155	1817	620	1649	175	30734
8	456	697	859	-	535	-	2437	-1981	3924418
				162		648			
9		139	283	-	-5	-	-113	113	12675
				144		576			
10	1,532	1253	1059	194	1448	776	-580	2112	4461698
11	1,037	1080	1076	4	1084	17	2224	-1187	1408005
12	2,339	2087	1885	202	2289	809	1101	1238	1532326
							3098		
Total	12021	11837	11703	134	10620	535	11155	1314	17187065
								MSE	1718706

Sumber: Data Primer

Tabel 9. Hasil Perhitungan DES dengan $\alpha = 0.9$

Periode	Demand	S't	S''t	S't-	at	bt	Ft	Error	Error^2
(t)	(x)			S''t					
1	1,350	1350	1350						
2	1,300	1305	1310	-5	1301	-41			
3		131	248	-	13	-	1260	-1260	1587600
				118		1061			
4	764	701	655	45	746	407	-	1813	3285156
							1049		
5	231	278	316	-38	240	-340	1153	-922	849900
6	1,188	1097	1019	78	1175	703	-99	1287	1657643
7	1,824	1751	1678	73	1825	659	1878	-54	2947
8	456	586	695	-	476	-983	2484	-2028	4111694
				109					
9		59	122	-64	-5	-573	-507	507	257046
10	1,532	1385	1258	126	1511	1136	-578	2110	4450735
11	1,037	1072	1090	-19	1053	-168	2647	-1610	2592534
12	2,339	2212	2100	112	2324	1010	885	1454	2113756
							3334		
Total	12021	11925	11842	83	10659	750	8075	1296	20909011
								MSE	2090901

Tabel 10. Perbandingan Nilai MSE dari Metode DES

No.	Metode	Nilai MSE
1	Double Exponential Smoothing $\alpha = 0.2$	817028
2	Double Exponential Smoothing $\alpha = 0.3$	878752
3	Double Exponential Smoothing $\alpha = 0.4$	796303
4	Double Exponential Smoothing $\alpha = 0.5$	1086607
5	Double Exponential Smoothing $\alpha = 0.6$	1241436
6	Double Exponential Smoothing $\alpha = 0.7$	806727
7	Double Exponential Smoothing $\alpha = 0.8$	1718706
8	Double Exponential Smoothing $\alpha = 0.9$	2090901

Sumber: Data Primer

Berdasarkan tabel 10 diatas, nilai MSE terkecil dari beberapa α (*alpha*) yang telah dicoba diperoleh sebesar 796.303 dengan $\alpha = 0.4$.

Pengolahan data dengan Metode Regresi Linier:

Berdasarkan perhitungan diatas, nilai MSE dari metode *Regresi Linier* adalah 275711. Hasil dari *Regresi Linier* dapat dilihat dalam bentuk tabel seperti pada tabel 11 di bawah ini.

Tabel 11. Hasil Perhitungan Metode Regresi Linier

14001 11. Hushi I officentigan Metodo Regioni Emilia						
X Periode	Y Demand	XY	X^2	Y' Forecast	Y-Y'	(Y-Y')^2
1	1,350	1350	1	369	980.7	961808.8
2	1,300	2600	4	428	872.2	760789.6
3		0	9	486	-486.3	236442.5
4	764	3056	16	545	219.3	48075.2
5	231	1155	25	603	-372.2	138551.8
6	1,188	7128	36	662	526.3	276979.5
7	1,824	12768	49	720	1103. 8	1218379.8
8	456	3648	64	779	-322.7	104124.7
9		0	81	837	-837.2	700852.9
10	1,532	15320	100	896	636.3	404934.2
11	1,037	11407	121	954	82.9	6865.5
12	2,339	28068	144	1013	1326. 4	1759263.7
78	12,021	86500	650	8291	SUM	6617068.2
a b	310.80 58.49	Rumus	Y'	= a + b(X)	MSE	275711

Sumber: Data Primer

Dari hasil perhitungan MSE (Mean Squared Error) menggunakan metode Double Exponential Smoothing dan metode Regresi Linier pada data tersebut, ditemukan bahwa nilai MSE terkecil terjadi pada perhitungan menggunakan metode Regresi Linier.

Berikut tabel 12 perbandingan nilai MSE dari kedua metode tersebut:

Tabel 12. Perbandingan Nilai MSE dari

Period e (t)	Deman d (x)	Metode Metode Peramalan	
		Regresi	DES
		Linear	(0,7)
1	1,350	369	
2	1,300	428	
3		486	1326
4	764	545	689

5	231	603	716
6	1,188	662	478
7	1,824	720	812
8	456	779	1298
9		837	900
10	1,532	896	467
11	1,037	954	972
24	2,339	1013	1006
			2145
	MSE	275711	796303

Dari tabel 12 diatas, berdasarkan prinsip penggunaan pengukuran akurasi dimana semakin kecil nilai *error* atau kesalahan yang diperoleh, maka semakin akurat hasil peramalan tersebut. Oleh karena itu, metode yang paling tepat untuk menghitung peramalan penjualan *packaging* karung adalah metode *Regresi Linier*, karena memiliki nilai MSE yang lebih kecil dan cenderung memberikan peramalan yang lebih akurat berdasarkan data yang digunakan.

Berdasarkan hasil analisa diatas, diperoleh metode yang paling tepat untuk menghitung peramalan penjualan packaging bahan baku adalah metode Regresi Linier dengan jumlah sebesar 275.711. Berikut adalah hasil peramalan untuk 12 bulan ke depan menggunakan metode Regresi Linier, yang dapat dilihat dalam bentuk tabel 13 dibawah ini:

Tabel 13. Hasil Peramalan 12 Bulan

Selanjutnya				
Tahun	Periode	Forecas		
	13	1071		
	14	1130		
	15	1188		
	16	1247		
	17	1305		
2023	18	1364		
2023	19	1422		
	20	1481		
	21	1539		
	22	1597		
	23	1656		
	24	<u>1714 </u>		

Sumber: Data Primer

Kesimpulan

Berdasarkan hasil penelitian ini, penerapan metode peramalan pada penjualan *packaging* karung di PT. XYZ dapat disimpulkan sebagai berikut:

- Metode Double Exponential Smoothing dan metode regresi linier dapat digunakan untuk meramalkan penjualan packaging karung di PT. XYZ. Kedua metode mengandalkan data masa lampau, seperti periode peramalan, komponen trend. komponen musiman, atau komponen siklus untuk memprediksi kondisi masa depan.
- 2. Penggunaan pengetahuan diperoleh di PT. XYZ menunjukkan bahwa hasil peramalan harus dianalisis secara menyeluruh untuk memastikan metode yang digunakan adalah yang paling tepat. Hasil menunjukkan analisis metode Regresi Linier memiliki nilai error terkecil, vaitu 275.711. dan peramalan manual untuk periode berikutnya adalah sebanyak 16.713. Hasil analisis dengan metode Double Exponential Smoothing adalah sebanyak 796.303
- 3. Berdasarkan tabel 12 perbandingan nilai MSE kedua metode tersebut, menunjukkan nilai MSE yang terkecil diperoleh dari perhitungan peramalan dengan metode *Regresi Linier*. Maka metode yang paling tepat untuk digunakan dalam meramalkan 12 bulan selanjutnya adalah dengan menggunakan metode *Regresi Linier*.

Daftar Pustaka

Alexandri, M. B., Pragiwani, M., & Inayah. (2021). Analisis Metode Eqonomic Order Quantity (EOQ) dan Analisis Klasifikasi abc Serta Analisis Vital, Esesnsial dan Non Esesnsial (VEN) Terhadap Persediaan obat. *Responsive*, 3(3), 131-141.

Darmawan, W. A. (2019). Menentukan Jumlah Persediaan Bahan Baku Alumunium Pada Ikm Bunga Matahari Dengan Menggunakan Metode Eqonomic Order Quantity

- (EOQ). *Jurnal Media Teknologi*, *6*((1), 147-170.
- Hasan, I. (1999). Pokok-Pokok Materi Statistik 1 (Statistik Deskriptif). Jakarta: Bumi Aksara.
- Heizer, J., & Render, B. (2006). *Operations Management*. Jakarta: Salemba Empat.
- Herjanto, E. (2008). *Manajemen Operasi* (Edisi Ketiga ed.). Jakarta: Grasindo.
- Hudaningsih, N., Utami, S. F., & Jabbar, W. A. (2020). Perbandingan Peramalan Penjualan Produk Aknil Pt.Sunthi Sepurimengguanakan Metode Single Moving Average. *jurnal jinteks*.
- Nasution, A. H., & Prasetyawan. (2008).

 *Perencanaan dan pengendalian Produksi (pertama ed.).

 Yogyakarta: Graha ilmu.
- Purnomo, H. (2003). *Pengantar Teknik Industri* (1 ed.). Yogyakarta: Graha Ilmu.
- Qamal, M. (2015). Peramalan Penjualan Makanan Ringan dengan Metode

- Single Exponential Smooting.

 Jurnal Penelitian Teknik

 Informatika, 26.
- Rachman, R. (2018). Penerapan Metode Moving Average dan Exponential Smoothing pada Peramalan Produksi Industri Garment. *Jurnal Informatika*, 5(1), 211-220., 5(1), 211-220.
- Sari, R. K., & Isnaini, F. (2021). Perancangan Sistem Monitoring Persediaan Stok Es Krim Campina pada PT Yunikar Jaya Sakti. *Jurnal Informatika dan Rekayasa Perangkat Lunak*, 2(1), 151–159.
- Subagyo, P. (1986). Forecasting Konsep dan aplikasi (2 ed.). Yogyakarta: BPPE UGM.
- Swasono, M. A., & Prastowo, A. T. (2021). Analisis Dan Perancangan Sistem Infomasi Pengendalian Persediaan Barang. *Jurnal Informatika dan Rekayasa Perangkat Lunak*, 2 (1), 134–143.

346