Peramalan Permintaan Minyak Goreng untuk Perencanaan Kebutuhan Crude Palm Oil di PT. PQS

Authors

  • Lisa Nesti Politeknik ATI Padang
  • Rahmi Elviana Politeknik ATI Padang
  • Meysha Azhara Politeknik ATI Padang

DOI:

https://doi.org/10.37090/indstrk.v8i4.1616

Abstract

  1. PQS is a company engaged in the processing of Crude Palm Oil (CPO). The production system employed is make-to-stock, with production planning based on estimates and without the implementation of any specific method for production forecasting. Consequently, this has led to unmet consumer demand, with consumers having to wait until the cooking oil is available and distributed (out of stock). The objective of this research is to forecast the demand for cooking oil to plan for CPO needs and to determine the forecasted results for five periods, spanning from August to December 2023. The methods employed include Single Moving Average and Single Exponential Smoothing, validated by the POM-QM application. Based on the calculation results using the Single Moving Average method, an MAPE (Mean Absolute Percentage Error) of 13.12% was obtained, while the Single Exponential Smoothing method resulted in an MAPE of 14.44%. The chosen method for obtaining the most accurate forecasting method for cooking oil demand for CPO needs is the Single Moving Average method, as it has a smaller error rate.

Keywords: Forecasting, Single Moving Average, Single Exponential Smoothing

References

Anbar, L. A. (2022). Peramalan permintaan tas laptop menggunakan model time series. Journal Industrial Servicess, vol. 7, no. 2, April 2022 , 285–288.

Andriana, A. &. (2017). Peramalan Jumlah Produksi Teh Menggunakan Metode Single Moving Average (SMA). Prosiding Saintiks FTIK Unikom , (pp. 1-6). Bandung.

Anisya, A. &. (2016). Rekayasa Perangkat Lunak Pengendalian Inventori Menggunakan Metode SMA (Single Moving Average) Berbasis AJAX (Asynchronous Javascript and XML)(Studi Kasus: PTP Nusantara VI (Persero) Unit Usaha Kayu Aro). Jurnal TeknoIf , 4 (2), 11-17.

Astuti, Y. N. (2019). Penerapan Metode Single Moving Average untuk Peramalan Penjualan Mainan Anak. Seminar Nasional Sitem Informasi dan Teknik Informatika, (pp. 253-261). Yogyakarta.

Bilaffayza, E. S., Wahyudin, W., & Herwanto, D. (2023). Forecasting Demand Of Moving Average And Linier Regression Methods In Predicting The Production Of K93 Disc Brake Product (Case Study Of PT United Steel Center Indonesia). Jurnal Rekayasa Sistem & Industri (JRSI) , 10 (1).

Chaerunnisa, N. M. (2021). Perbandingan Metode Single Exponential Smoothing Dan Moving Average Pada Peramalan Penjualan Produk Minyak Goreng Di Pt Tunas Baru Lampung. Jurnal Rekayasa Sistem Industri , 6 (2).

Fitriana, M., Sudarwardi, D., & Nurlaela. (2020). Penerapan Metode Single Moving Average Dan Exsponential Smoothing Pada Usaha Asrie Modesta. Jurnal Cakrawala Management Busines , 3 (1).

Ginantra, N. L. (2019). Penerapan Metode Single Exponential Smoothing Dalam Peramalan Penjualan Barang. J-SAKTI (Jurnal Sains Komputer Dan Informatika) , 3 (2), 433-441.

Handoko, H. T. (2015). Manajemen Produksi. Edisi Pertama. Yogyakarta: BPFE.

Ilhamti, C., & Vikaliana, R. (2024). Analisis Peramalan Permintaan Crude Palm Oil (CPO) Menggunakan Metode Single Exponential Smoothing, Moving Average dan Holt Winter’s di Perusahaan Perkebunan Sawit. Jurnal Rekayasa Sistem & Industri (JRSI) , 11 (1), 24-32.

Indah, D. R. (2018). Sistem Forecasting Perencanaan Produksi dengan Metode Single Eksponensial Smoothing pada Keripik Singkong Srikandi Di Kota Langsa. Jurnal Penelitian Ekonomi Akuntansi (Jensi) , 2 (1), 10–18.

Liao, C.-N. (2011). Fuzzy analytical hierarchy process and multiesegment goal programming applied to new product segmented under price strategy. . Computers&Industrial Engineering .

Naufal Hay’s, R. &. (2017). Sistem Informasi Inventory Berdasarkan Prediksi Data Penjualan Barang Menggunakan Metode Single Moving Average Pada CV. Agung Youand. ProTekInfo (Pengembangan Riset Dan Observasi Teknik Informatika , 29–33.

Rahayu, S. I., & Arifin, J. (2023). Penerapan Metode Double Exponential Smoothing dan Regresi Linier pada Peramalan Persediaan Packaging di PT. XYZ. Jurnal Ilmiah Teknik Industri , 7 (3), 336-34.

Selasakmida, Tarno, & Wuryandari. (2021). . 2021. Perbandingan Metode Double Exponential Smoothing Holt Dan Fuzzy Time Series Chen Untuk Peramalan Harga Paladium. J Gaussian. 10(3):325–336. , 10 (3), 325-336.

Sinsu, W. K. (2022). Optimasi Perencanaan Produksi Cat Dengan Metode Goal Programming pada PT. Tunggal Djaja Indah. Seminar Nasional SENIATI 2022 METAVERSE: Peluang Dan Tantangan Pendidikan Tinggi. Malang.

Solikin, I. (2016). Sistem Informasi Peramalan Pembelian Stok Barang menggunakan Metode Single Moving Average (SMA) . Jurnal Cendikia , 18–22.

Tursina, Septiriana, & Varian. (2023). Prediksi Indeks Harga Konsumen Menggunakan Metode Fuzzy Time Series Cheng. J LOCUS Penelit Pengabdi .

Wardah, S., & Sundari, S. (2023). Implementasi Metode Fuzzy Time Series Untuk Meramalkan Jumlah Ekspor Produk Kopi Dari Indonesia. Industrika : Jurnal Ilmiah Teknik Industri , 7 (2), 127–134.

Wijaya, A. R. (2023). Model Prediksi Data Harga Minyak Mentah Dunia Dengan Metode Exponential Smoothing. Buletin Imliah Math Statistika dan terapannya (Bimaster), 12, pp. 21-28.

Downloads

Published

2024-10-17