APAKAH RITME SIRKADIAN BERPENGARUH TERHADAP ANTIBIOTIKA : STUDI LITERATUR

Authors

  • Ilham alifiar Program Studi Profesi Apoteker, Fakultas Farmasi Universitas BTH Kota Tasikmalaya
  • Nur Rahayuningsih Program Studi Profesi Apoteker, Fakultas Farmasi Universitas BTH Kota Tasikmalaya
  • Lalu Muhammad Irham Fakultas Farmasi, Universitas Ahmad Dahlan, Yogyakarta
  • Chita Widia Prodi Keperawatan, Fakultas Ilmu Kesehatan Universitas BTH Kota Tasikmalaya

DOI:

https://doi.org/10.37090/jfl.v11i1.674

Abstract

Antibiotics are one of the most widely used drugs in the world, therefore research on the use of antibiotics has been carried out, including research on the use of antibiotics associated with circadian rhythms for 24 hours. This literature study aims to explore research related to the effects of circadian rhythms on antibiotic drug levels. We conducted a search on two electronic databases, namely PubMed and Cochrane Library to search for articles related to the influence of circadian rhythms on antibiotics. This study does not limit the year, but the focus of this study is research conducted on humans and is a clinical study or randomized controlled clinical study. From the search, 28 articles were obtained from PubMed and 19 articles from the Cochrane Library. Of the total articles, six articles fall into the criteria of this study. One article is a test on levofloxacin, one article is a test on cefrozil, one article is a test on flomoxef, one article is a test on ciprofloxacin, and two articles are tests on tobramycin. From this study, it was found that the human body's circadian rhythm has an effect on antibiotics, either affecting the pharmacokinetic profile of the drug, or affecting the potential therapeutic effect of the antibiotic itself. Keywords: antibiotics, chronopharmacology, circadian rhythm

Downloads

Download data is not yet available.

References

Bass J. T. (2017). The circadian clock system's influence in health and disease. Genome medicine, 9(1), 94. https://doi.org/10.1186/s13073-017-0485-2

Komarzynski, S., Bolborea, M., Huang, Q., Finkenstädt, B., & Lévi, F. (2019). Predictability of individual circadian phase during daily routine for medical applications of circadian clocks. JCI insight, 4(18), e130423. https://doi.org/10.1172/jci.insight.130423

Young, M. E., Reddy, A. B., & Pollock, D. M. (2018). Introduction to special issue: Circadian regulation of metabolism, redox signaling and function in health and disease. Free radical biology & medicine, 119, 1–2. https://doi.org/10.1016/j.freeradbiomed.2018.03.046

Poirier, L., Lefebvre, J., & Lacourciere, Y. (1999). Chronotherapeutics: are there meaningful differences among antihypertensive drugs?. Current hypertension reports, 1(4), 320–327. https://doi.org/10.1007/s11906-999-0040-7

Millar-Craig, M. W., Bishop, C. N., & Raftery, E. B. (1978). Circadian variation of blood-pressure. Lancet (London, England), 1(8068), 795–797. https://doi.org/10.1016/s0140-6736(78)92998-7

Saitoh, T., Watanabe, Y., Kubo, Y., Shinagawa, M., Otsuka, K., Ohkawa, S. I., & Watanabe, T. (2001). Intragastric acidity and circadian rhythm. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 55 Suppl 1, 138s–141s. https://doi.org/10.1016/s0753-3322(01)90019-8

Fukuchi, T., Ashida, K., Yamashita, H., Kiyota, N., Tsukamoto, R., Takahashi, H., Ito, D., & Nagamatsu, R. (2005). Influence of cure of Helicobacter pylori infection on gastric acidity and gastroesophageal reflux: study by 24-h pH monitoring in patients with gastric or duodenal ulcer. Journal of gastroenterology, 40(4), 350–360. https://doi.org/10.1007/s00535-004-1552-1

Li, W. K., Li, H., Lu, Y. F., Li, Y. Y., Fu, Z. D., & Liu, J. (2017). Atorvastatin alters the expression of genes related to bile acid metabolism and circadian clock in livers of mice. PeerJ, 5, e3348. https://doi.org/10.7717/peerj.3348

Izquierdo-Palomares, J. M., Fernandez-Tabera, J. M., Plana, M. N., Añino Alba, A., Gómez Álvarez, P., Fernandez-Esteban, I., Saiz, L. C., Martin-Carrillo, P., & Pinar López, Ó. (2016). Chronotherapy versus conventional statins therapy for the treatment of hyperlipidaemia. The Cochrane database of systematic reviews, 11(11), CD009462. https://doi.org/10.1002/14651858.CD009462.pub2

Kaur, G., Phillips, C. L., Wong, K., McLachlan, A. J., & Saini, B. (2016). Timing of Administration: For Commonly-Prescribed Medicines in Australia. Pharmaceutics, 8(2), 13. https://doi.org/10.3390/pharmaceutics8020013

Awad, K., Serban, M. C., Penson, P., Mikhailidis, D. P., Toth, P. P., Jones, S. R., Rizzo, M., Howard, G., Lip, G., Banach, M., & Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group (2017). Effects of morning vs evening statin administration on lipid profile: A systematic review and meta-analysis. Journal of clinical lipidology, 11(4), 972–985.e9. https://doi.org/10.1016/j.jacl.2017.06.001

Sari Asih, R. ., Alifiar, I. ., & Purwandy, Y. . (2020). PENGARUH KRONOFARMAKOLOGI TERHADAP KADAR KOLESTEROL TOTAL DAN TRIGLISERIDA DALAM DARAH PASIEN PENGGUNA OBAT GOLONGAN STATIN DAN FIBRAT. JFL : Jurnal Farmasi Lampung, 9(2), 78-83. https://doi.org/10.37090/jfl.v9i2.335

Prayle, A. P., Jain, K., Touw, D. J., Koch, B. C., Knox, A. J., Watson, A., & Smyth, A. R. (2016). The pharmacokinetics and toxicity of morning vs. evening tobramycin dosing for pulmonary exacerbations of cystic fibrosis: A randomised comparison. Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society, 15(4), 510–517. https://doi.org/10.1016/j.jcf.2015.07.012

van Maarseveen, E. M., van der Meer, R., Neef, C., Heijerman, H., & Touw, D. J. (2020). Does Circadian Rhythm Affect the Pharmacokinetics of Once-Daily Tobramycin in Adults With Cystic Fibrosis?. Therapeutic drug monitoring, 42(4), 595–599. https://doi.org/10.1097/FTD.0000000000000743

Rao, V. V., Rambhau, D., Rao, B. R., & Srinivasu, P. (1997). Circadian variation in urinary excretion of ciprofloxacin after a single-dose oral administration at 1000 and 2200 hours in human subjects. Antimicrobial agents and chemotherapy, 41(8), 1802–1804. https://doi.org/10.1128/AAC.41.8.1802

Xia Li, Zhao Wang, Wei-ping Liu, Yan-gang Wang, Bing Li & Zhou Fei (2013) Chronokinetic study of cefprozil in postprandial and fasting volunteers, Biological Rhythm Research, 44:1, 95-102, DOI: 10.1080/09291016.2011.652862

Kervezee, L., Stevens, J., Birkhoff, W., Kamerling, I. M., de Boer, T., Dröge, M., Meijer, J. H., & Burggraaf, J. (2016). Identifying 24 h variation in the pharmacokinetics of levofloxacin: a population pharmacokinetic approach. British journal of clinical pharmacology, 81(2), 256–268. https://doi.org/10.1111/bcp.12783

Hishikawa, S., Kobayashi, E., Sugimoto , K., Miyata, M., & Fujimura, A. (2001). Diurnal variation in the biliary excretion of flomoxef in patients with percutaneous transhepatic biliary drainage. British journal of clinical pharmacology, 52(1), 65–68. https://doi.org/10.1046/j.0306-5251.2001.01418.x

National Center for Biotechnology Information (2021). PubChem Compound Summary for CID 36294, Tobramycin. Retrieved June 6, 2021 from https://pubchem.ncbi.nlm.nih.gov/compound/Tobramycin.

National Center for Biotechnology Information (2021). PubChem Compound Summary for CID 2764, Ciprofloxacin. Retrieved June 6, 2021 from https://pubchem.ncbi.nlm.nih.gov/compound/Ciprofloxacin.

Nicolau, D. P., Onyeji, C. O., Zhong, M., Tessier, P. R., Banevicius, M. A., & Nightingale, C. H. (2000). Pharmacodynamic assessment of cefprozil against Streptococcus pneumoniae: implications for breakpoint determinations. Antimicrobial agents and chemotherapy, 44(5), 1291–1295. https://doi.org/10.1128/AAC.44.5.1291-1295.2000

National Center for Biotechnology Information (2021). PubChem Compound Summary for CID 149096, Levofloxacin. Retrieved June 6, 2021 from https://pubchem.ncbi.nlm.nih.gov/compound/Levofloxacin.

Shah, P.M., Knothe, H. The in vitro activity of flomoxef compared to four other cephalosporins and imipenem. Infection 19, S279–S283 (1991). https://doi.org/10.1007/BF01645540

Kim, S. Y., & Moon, A. (2012). Drug-induced nephrotoxicity and its biomarkers. Biomolecules & therapeutics, 20(3), 268–272. https://doi.org/10.4062/biomolther.2012.20.3.268

Hosten AO. BUN and Creatinine. In: Walker HK, Hall WD, Hurst JW, editors. Clinical Methods: The History, Physical, and Laboratory Examinations. 3rd edition. Boston: Butterworths; 1990. Chapter 193. Available from: https://www.ncbi.nlm.nih.gov/books/NBK305/

Musiek, E. S., & Fitzgerald, G. A. (2013). Molecular clocks in pharmacology. Handbook of experimental pharmacology, 217(217), 243–260. https://doi.org/10.1007/978-3-642-25950-0_10

Gumz, M. L., Stow, L. R., Lynch, I. J., Greenlee, M. M., Rudin, A., Cain, B. D., Weaver, D. R., & Wingo, C. S. (2009). The circadian clock protein Period 1 regulates expression of the renal epithelial sodium channel in mice. The Journal of clinical investigation, 119(8), 2423–2434. https://doi.org/10.1172/JCI36908

Pizarro, A., Hayer, K., Lahens, N. F., & Hogenesch, J. B. (2013). CircaDB: a database of mammalian circadian gene expression profiles. Nucleic acids research, 41(Database issue), D1009–D1013. https://doi.org/10.1093/nar/gks1161

Downloads

Published

2022-09-13

How to Cite

alifiar, I. ., Rahayuningsih, N. ., Muhammad Irham, L. ., & Widia, C. . (2022). APAKAH RITME SIRKADIAN BERPENGARUH TERHADAP ANTIBIOTIKA : STUDI LITERATUR . JFL : Jurnal Farmasi Lampung, 11(1), 1-12. https://doi.org/10.37090/jfl.v11i1.674